
Coupled Multi-Physics Approach in CESAR

Timothy J. Tautges, Vijay Mahadevan, Rajeev
Jain, Tom Peterka

Mathematics and Computer Science Division
Argonne National Laboratory

Exascale Research Conference
Washington, DC
October 3, 2012

10/3/12 Exascale Research Conference, Washington, DC 2

Outline
 Introduction & Motivation
 Physics
 Coupling approaches
 Mesh-related details
 Results so far
 Conclusions

10/3/12 Exascale Research Conference, Washington, DC 3

Introduction: Nuclear Reactor Physics

• Nuclear reactor core designs vary by coolant, neutron spectrum,
fuel types

− “Light water” reactors: low-Z coolant/moderator, low-energy neutrons

− “Fast” reactors: higher-Z coolant, higher-energy neutrons

• Interaction between physics strongly affects fission reactivity

– LWR: coolant boiling, strong fuel doppler affect (oxide)

– Fast reactor: structural expansion, weak fuel doppler affect (metal)

• Safety/performance of reactors inherently depends on coupling
between physics

• Localized 3D effects, e.g. near control blades or grid spacer
structures, affects safety & reliability, motivating need for much
higher fidelity than current homogenized methods

10/3/12 Exascale Research Conference, Washington, DC 4

Reactor Simulation is an Exascale Computing Problem

• Current generation of nuclear reactors
designed by experiment first,
computing second

– We can no longer do this for next-
generation reactors

• Neutron transport, thermal/fluid
transport with turbulence, structural
mechanics are each petascale+
computing problems

− To get the right answer, we need to do
all 3, coupled

Core

Steam
Generator

10/3/12 Exascale Research Conference, Washington, DC 5

Coupled Neutron, Fluid, Heat Transport

Fluid transport:

Heat transport:

Neutron transport:

in-scattering fission

10/3/12 Exascale Research Conference, Washington, DC 6

Coupled Neutron, Fluid, Heat Transport

fission
heating

rho, T-dependent

10/3/12 Exascale Research Conference, Washington, DC 7

Coupled Neutron, Fluid, Heat Transport

fission
heating

Code1 (UNIC or proxy)

Code 2 (Nek5000 or proxy)

T-dependentrho, T-dependent

8

Full/Original Physics Codes
Nek5000 UNIC

Physics Incompressible NS Boltzmann transport

Discretization SEM w/ LES turb
(NxNxN GLL basis)

FEM
(linear, quadratic)

Solver Native semi-implicit with
AMG

3-level hierarchy
(eigenvalue, energy,
space/angle), with PETSc
for space/angle

Materials, BCs User-defined functions ExodusII-like element
blocks, sidesets

Mesh type Ucd hex Ucd hex, tet, prism

Implementation F77 + C, 100k lines F90, 260k lines

Mesh, data storage Common blocks F90 modules

Scalability 2000 Gorden Bell prize,
71% strong scaling on
262k cores

2009 Gordon Bell finalist,
76% strong scaling on
295k cores

Effort invested ~30 man-years ~10 man-years

10/3/12 Exascale Research Conference, Washington, DC 9

Coupling Approaches

Loose:

• Separate/original physics
components (A, B)

• Operator-split solution,
Jacobi or Gauss-Siedel

• Conditionally stable

• Convergence may be slow,
depending on relative
magnitude/variations of
coupling terms

…
A

B

…
A

B

tn: k k+1 …

A

B
…

A

B

tn+1: k k+1 …

• Different flavors of coupling schemes have variations in stability,
accuracy, and software characteristics

 Tight:

• Separate/original physics
components (A, B)

• Physics compute Jacobian &
residual, driver (C) computes
new solution

• Can be unconditionally stable

• Convergence is better than
for loose coupling

• May require physics
component modifications to
return Jacobians/residuals

 Full:

• All equations solved
simultaneously, in same
coupled system

• No iterations between
physics required

• Physics components must
be combined, solution
procedures re-written

…
tn

C=(A, B) …

steady-state

…

tn: k k+1 …

AB

C

AB

C
…

tn+1: k k+1 …

AB

C

AB

C

Jacobi Gauss-Seidel

10/3/12 Exascale Research Conference, Washington, DC 10

Coupling Considerations For CESAR
• For a variety of reasons, full coupling approach isn't the best choice

– Difficult to express T-dependence of nuclear cross sections in
differentiable form, making it difficult to incorporate in unified
non-linear solution procedure

– Neutron transport may not even be expressed in PDE form
(e.g. Monte Carlo), difficult to formulate Jacobian

– Difficult to develop single-physics module that performs at exascale, let
alone a fully coupled multi-physics code

• Structuring our coupled code work to allow simultaneous investigation
of multiple (loose and tight) coupling approaches

– Model coupled system as solution of individual physics (possibly in
original code modules) and explicit solution transfer for coupling
terms

10/3/12 Exascale Research Conference, Washington, DC 11

Coupling Considerations For CESAR
• For a variety of reasons, full coupling approach isn't the best choice

– Difficult to express T-dependence of nuclear cross sections in
differentiable form, making it difficult to incorporate in unified
non-linear solution procedure

– Neutron transport may not even be expressed in PDE form
(e.g. Monte Carlo), difficult to formulate Jacobian

– Difficult to develop single-physics module that performs at exascale, let
alone a fully coupled multi-physics code

• Structuring our coupled code work to allow simultaneous investigation
of multiple (loose and tight) coupling approaches

– Express coupled solution as solution of individual physics (possibly in
original code modules) and explicit solution transfer for coupling
terms

– Compose coupled code from 3 primary pieces:

• Driver (Coupe')

• Physics modules (UNIC, Nek, or mini-apps)

• Solution transfer tool (MOAB & MBCoupler)

Coupe'

Nek UNIC

MOAB/MBCouplerData/Vis

10/3/12 Exascale Research Conference, Washington, DC 12

Coupe' Coupled Physics Driver

• Designed to allow both loose (Operator-Split) and tight coupling
strategies

– Tight coupling better resolves spatio-temporal coupling, but requires
more from individual physics (residuals, etc.)

– Run-time selection of coupling scheme with other parameters fixed
allows apples-apples comparisons

• Coupe' coordinates:
– Iterations in a timestep and over timesteps

– Calling solution transfer

– Testing for convergence

• Coupe' framework has few minimal requirements on individual physics
from a software perspective:

– Store corresponding mesh information to or read mesh info from MOAB

– Push/pull coupled fields to/from MOAB tags

– Provide functions that handle creation, destruction, setup, solve

– Optionally, provide function for nonlinear residual

– Optionally, provide the action of a preconditioner on a vector to use as
an accelerator in the coupled system solve

13

Mesh-Oriented datABase (MOAB)
• Library for representing, manipulating structured, unstructured
mesh models

• Supported mesh types:
– FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
– Polygons/polyhedra
– Structured mesh

• Optimized for memory usage first, speed second
• Implemented in C++, but uses array-based storage model
• Mesh I/O from/to various formats

– HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus

• Main parts:
– Core representation
– Tool classes (skinner, kdtree, OBBtree, ParallelComm, …)
– Tools (mbsize, mbconvert, mbzoltan, mbcoupler, …)

• Parallel model supports typical element-based decompositions, with
typical mesh-based functions (shared interface, ghost exchange,
ownership queries)

10/3/12 Exascale Research Conference, Washington, DC 14

p1

p3

p2

p4

OR

p1 p2

p3 p4

p6p5

p8p7

MOAB-Based Solution Transfer
 Meshes: Each physics type is solved on an independent mesh whose
characteristics (element type, density, etc.) is most appropriate for the
physics

 Distribution: Each physics type and mesh is distributed
independently across a set of processors, defined by an MPI
communicator for each mesh

 Implementation: On a given processor, all meshes are stored in a
single iMesh instance, and that instance communicates with all other
processors containing pieces of any of those meshes.

Physics 1 Physics 2

15

Solution Transfer: 4 Steps

1

4

2

3

421 3

421 3 421 3

421 3

1. Initialization

1

4

2

3

421 3

421 3 421 3

421 3

2. Point Location

(x,y,z)

p, i

i: (x, y, z), h, (u, v, w)
…

h, p, i
…

3. Interpolation

i

Φ(x,y,z)

source
mesh

kdtrees

target procs
store

all kdtree roots

a. target finds
candidate
source procs

b. aggregate
request to
interpolate points

c. return index
to interpolated
point

Source proc: index of mapped points:
Target position, local element handle,
param coords

Target proc: local handle, source proc,
remote index

a. aggregate
request: indices
only!

b. aggregate reply:
integrated field

Minimize data transferred
– Store index close to source

field, communicate indices
only

All communication
aggregated, using “crystal
router” for generalized all-
to-all

4. Normalization

10/3/12 Exascale Research Conference, Washington, DC 16

Solution Transfer: Performance, Accuracy

7M Hexes

28M Tets

17

Exascale Issues

• Partitioning physics over processors

• Parallel solution transfer

• Local tree search

• Memory sharing

10/3/12 Exascale Research Conference, Washington, DC 18

Solution Transfer: Distribution Over Processors

• Assuming fixed number of procs and fixed (possibly non-equal)
problem sizes for physics, 2 choices for partitioning physics
solutions over machine

• Homogeneous: each proc solves a piece of each physics
– Requires good strong scaling of each physics

– Can do both Jacobi- and Gauss-Siedel-type loose coupling

– Easier load balancing, even with sub-cycling in time

• Disjoint: each physics solved on set of procs disjoint from other
physics procs

– Lighter strong scaling requirements

– Gauss-Siedel scheme leaves processor sets idle, Jacobi requires
accurate prediction of runtime

• Our approach: don't over-constrain any of the underlying support
(i.e. solution transfer can support both homogeneous and disjoint
scenarios)

10/3/12 Exascale Research Conference, Washington, DC 19

Solution Transfer: Mesh Search Details

• Current parallel search method does linear search over top-level
boxes on each proc, which is both scalability and memory
problem

• Change to a rendezvous-type method, where intermediate set of
procs with deterministic partition of overall bounding box &
intersecting processor boxes directs packets to correct proc(s)

• Local search tree currently a kdtree, but probably more efficient to
use a bvh tree

– Tree search consists of tree traversal (cheap), in-leaf element query
(expensive); bvh adds tree complexity to reduce leaf complexity

• In process of implementing/testing bvh tree

• Will implement rendezvous method in early FY13

10/3/12 Exascale Research Conference, Washington, DC 20

Memory Sharing Between Physics, MOAB
• MOAB uses array-based storage of most “heavy” data, and

exposes API functions giving access to contiguous chunks of those
data (mesh definition & mesh-based variables)

 Range::iterator iter = myrange.begin(); int count; double *data;
 while (iter != myrange.end()) {

 tag_iterate(tag_handle, iter, myrange.end(), count, (void*&)data_ptr);

 iter += count;

 }

• Small applications show that this almost completely eliminates API
cost for accessing variable data memory owned by MOAB

• Advantages:
– Eliminates memory copy between physics & backplane, saving

memory and time

– Allows direct use of parallel services like I/O, in-situ viz

– Simplifies workflow (pre, analysis, post) because no issues with
data formats for various physics

– Will allow faster transition to memory manipulations for manycore,
GPU

• The fine print: depends heavily on mesh, DOF ordering in physics

Coupling/Datavis Proxy Application

• Purpose of proxy application: study specific aspect(s) of exascale problem
– Compute proxy: computation/communication kernel(s), with narrow option/feature

set

– Coupling/datavis: data-intensive, exercising overall simulation workflow

• Goals
– Provide shared, reference implementation for calling data-oriented tasks needed

by most proxy activities

– Acquire representative raw data in the coupled application interface &
make available to coupling/datavis proxies

– Test & benchmark various options of data-oriented services

– Use results to influence co-design of hardware and software (libraries)

– Make proxies available to other subgroups (eg. GPGPUs, programming models,
performance modeling, library developers)

• Factors
– How well do proxies represent actual problems (in our case, real data)?

• Real features, eg., vortices, data distributions, outliers, correlations among variables

– Difficult if not impossible to generate without running actual solvers

• However, results can be stored and later read back into proxies without rerunning
simulation

Coupling/Datavis Proxy Approach

• Construct single high-level proxy shell implementing:
– Option processing (proxy type, mesh/data files, other parameters)

– library initialization (MOAB, vtk, maybe solvers)

– Coordination of I/O

• Individual options/functions for studying specific things:

a)Coupling & solution transfer

b)Data analysis

c) Visualization

d)Storage

(a) Coupling & Solution Transfer Proxy

• Questions/issues
– Performance, accuracy of

solution transfer

– Partition of multiple meshes over
processors

– Hybrid programming models &
partitioning over cores/nodes

– Solution of post-transfer numerical
constraints (conservation/normalization)

• Method
– Reads two different test meshes

– Transfers solution from first mesh
to second

– Compute error for analytic solution data

– Measure performance/accuracy

Sample mesh of
1M hexahedral

cells.

Sample mesh of
1M tetrahedral
cells.

(b) Data Analysis Proxy

• Questions/Issues
– Size/data model of derived data

– Placement and scheduling of analysis tasks

– Resampling, interpolating, subsettting are valid operations

• Method
– Takes mesh interface handle

– Derive/compute new analysis data (e.g. Lambda-2 vorticity)

(c) Visualization Proxy
• Questions/Issues

– Memory savings vs. code
complexity from in-situ
visualization

– Placement and scheduling of
visualization work

• Method
– Takes mesh interface handle

– Call in-situ rendering of
various types (polygon,
volume rendering)

– Assess resource usage with
memory sharing vs.
deep copy

5K 4th-order spectral element mesh
with proxy CFD solution data,
rendered in wireframe mode.

(d) Storage Proxy App
• Questions/Issues:

– Checkpoint reading/writing performance

– Analysis data vs. checkpoint data?

– Storage-side format & layout affects on scaling

• Method
– Takes mesh interface handle

– Writes mesh to storage (checkpoint)

– Writes results of analysis or visualization proxy to storage

– Compare performance with I/O benchmarks and published
performance for similar I/O workloads

Towards Full-Up Exascale Coupled Reactor Analysis

• Proxy apps should inform both hardware/middleware design as well
as various aspects of full-up exascale applications

• Physics (computation, communication)
– Performance of key mat-mat multiply kernel, scalability of pressure

solve & MOC methods, preconditioning affects on multi-layer
iteration (eigenvalue, energy, space), deep memory hierarchy
design

• Coupling/datavis (data size, complexity)
– Support for exascale-class datasets across software stack

• In many cases, improvements from proxies can directly inform full-
up codes

– Physics: many kernels isolated in relatively small code segments

– Libraries: same ones being used for proxies

• Leveraging work on coupled reactor analysis
efforts from NEAMS targeted at science
problem on smaller machines

sahex1 test
UNIC-Nek5000

Conclusions

• Coupled multi-physics comes in many forms; for reactor analysis,
loose, (various forms of) tight coupling hold the most promise

– Key research focus, interactions between scalability and numerics

• Co-design for coupling, and esp. datavis, involves not only
computation/communication kernels, but also software stack co-
design for exascale-class data

– Lots more moving (software) parts

• Proxy apps for this area are as much about data as
computation/communication

– Layout important, with added complexity of libraries & metadata

– In a sense, proxy app is closer to full-up app, since libraries are the
same

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Mesh-Oriented datABase (MOAB)
	MOAB-Based Solution Transfer
	Solution Transfer: 4 Steps
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Data-Intensive Proxy Apps Help Answer Questions
	Slide 22
	(a) Driver Proxy App
	(b) Data Analysis Proxy App
	(c) Visualization Proxy App
	(d) Storage Proxy App
	Slide 27
	Slide 28

